PUBLIC SCHOOL DARBHANGA

SESSION (2020-21) CLASS-VIII MATHEMATICS

Topic: Rational numbers

1. Using appropriate properties find.
(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

$$= -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$
 (by commutativity)
$$= \frac{3}{5} (\frac{-2}{3} - \frac{1}{6}) + \frac{5}{2}$$

$$= \frac{3}{5} (\frac{-4-1}{6}) + \frac{5}{2}$$

$$=\frac{3}{5}(\frac{-5}{6})+\frac{5}{2}$$

(by distributivity)

$$=\frac{-15}{30}+\frac{5}{2}$$

$$=\frac{-1}{2}+\frac{5}{2}$$

$$=\frac{4}{2}$$

=2

(ii)
$$\frac{2}{5}$$
 × $\left(-\frac{3}{7}\right)$ $-\frac{1}{6}$ × $\frac{3}{2}$ + $\frac{1}{14}$ × $\frac{2}{5}$

$$\frac{2}{5} \times (-\frac{3}{7}) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$= \frac{2}{5} \times (-\frac{3}{7}) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$= \frac{2}{5} \times (-\frac{3}{7}) + \frac{1}{14} \times \frac{2}{5} - (\frac{1}{6} \times \frac{3}{2}) \text{ (by commutativity)}$$

$$= \frac{2}{5} \times \left(-\frac{3}{7} + \frac{1}{14}\right) - \frac{3}{12}$$

$$= \frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4}$$
(by distributivity)
$$= \frac{2}{5} \times \left(\frac{-5}{14}\right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14}\right) - \frac{1}{4}$$

$$= \left(\frac{-10}{70}\right) - \frac{1}{4}$$

$$= \frac{-1}{7} - \frac{1}{4}$$

$$= \frac{-4-7}{28}$$

$$= \frac{-11}{28}$$

2. Write the additive inverse of each of the following.

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

(i) $\frac{2}{8}$ Additive inverse of $\frac{2}{8}$ is $\frac{-2}{8}$

(ii) $\frac{-5}{9}$

Additive inverse of $\frac{-5}{9}$ is $\frac{5}{9}$ $(iii) \frac{-6}{-5} = \frac{6}{5}$

Additive inverse of $\frac{6}{5}$ is $\frac{-6}{5}$

(iv) $\frac{2}{-9} = \frac{-2}{9}$ Additive inverse of $\frac{-2}{9}$ is $\frac{2}{9}$

 $(v) \frac{19}{-6} = \frac{-19}{6}$

Additive inverse of $\frac{-19}{6}$ is $\frac{19}{6}$

3. Verify that: -(-x) = x for.

(i)
$$x = \frac{11}{15}$$
 (ii) $x = -\frac{13}{17}$

(i) $x = \frac{11}{15}$

We have, $x = \frac{11}{15}$

The additive inverse of x is -x
Then, the additive inverse of $\frac{11}{15}$ is $\frac{-11}{15}$ (as x+(-x)=0)

The same equality $\frac{11}{15} + (\frac{-11}{15}) = 0$, shows that the additive inverse of $\frac{-11}{15}$ is $\frac{11}{15}$.

Or, $-(\frac{-11}{15}) = \frac{11}{15}$,

(ii) $x = -\frac{13}{17}$ We have, $x = \frac{-13}{17}$ The additive inverse of x is -x (as x+(-x)=0) Then, the additive inverse of $\frac{-13}{17}$ is $\frac{13}{17}$ (as $(\frac{-13}{17} + \frac{13}{17}) = 0$ The same equality $(\frac{-13}{17} + \frac{13}{17}) = 0$, shows that the additive inverse of $\frac{13}{17}$ is $\frac{-13}{17}$.

Or, $-(\frac{13}{17}) = \frac{-13}{17}$,

4. Find the multiplicative inverse of the following. (i) -13 (ii)
$$\frac{-13}{19}$$
 (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$ (v) -1 $\times \frac{-2}{5}$ (vi) -1

Solution:

- Multiplicative inverse of -13 is $\frac{-1}{13}$
- (ii) $\frac{-13}{19}$ Multiplicative inverse of $\frac{-13}{19}$ is $\frac{-19}{13}$
- $(iii) \frac{1}{5}$ Multiplicative inverse of $\frac{1}{5}$ is 5

(iv)
$$\frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56}$$

Multiplicative inverse of $\frac{15}{56}$ is $\frac{56}{15}$

(v)
$$-1 \times \frac{-2}{5} = \frac{2}{5}$$

Multiplicative inverse of $\frac{2}{5}$ is $\frac{5}{2}$

Multiplicative inverse of -1 is -1

5. Name the property under multiplication used in each of the following. (i) $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$$

(ii)
$$\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

$$(iii) \frac{-19}{29} \times \frac{29}{-19} = 1$$

Solution:

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$$

Here 1 is the multiplicative identity.

(ii)
$$\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

e property of commutativity is used in the equation.

$$(iii) \frac{-19}{29} \times \frac{29}{-19} = 1$$

Multiplicative inverse is the property used in this equation.

6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Solution:

Reciprocal of
$$\frac{-7}{16} = \frac{16}{-7} = \frac{-16}{7}$$

According to the question,

$$\frac{\frac{6}{13}}{\cancel{13}} \times (\text{Reciprocal of } \frac{-7}{16})$$

$$\Rightarrow \frac{6}{13} \times \frac{-16}{7} = \frac{-96}{91}$$

7. Tell what property allows you to compute
$$\frac{1}{3} \times (6 \times \frac{4}{3})$$
 as $(\frac{1}{3} \times 6) \times \frac{4}{3}$.

Here, the way in which factors are grouped in a multiplication problem, supposedly, does not change the product. Hence, the Associativity Property is used here.

8. Is $\frac{8}{9}$ the multiplicative inverse of -1 $\frac{1}{8}$? Why or why not?

$$-1\frac{1}{8} \frac{-7}{8}$$

[Multiplicative inverse \Longrightarrow product should be 1] According to the question, $\Longrightarrow \frac{8}{9} \times \frac{-7}{8} = \frac{-7}{9} \neq 1$

$$\Rightarrow \frac{8}{9} \times \frac{-7}{8} = \frac{-7}{9} \neq 1$$

$$\therefore$$
, $\frac{8}{9}$ is **not** the multiplicative inverse of $-1\frac{1}{8}$

9. Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

$$0.3 = \frac{3}{10}$$

$$3\frac{1}{3} = \frac{10}{3}$$

[Multiplicative inverse \Rightarrow product should be 1]

According to the question,

$$\Rightarrow \frac{3}{10} \times \frac{10}{3} = 1$$

 \therefore , 0.3 is the multiplicative inverse of 3 $\frac{1}{3}$

10. Write.

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Solution:

(i) The rational number that does not have a reciprocal is **0**.

$$0 = 0$$

Reciprocal of
$$0 = \frac{1}{0}$$
, which is not defined.

(ii) The rational numbers that are equal to their reciprocals are 1 and -1.

Reason:
$$1=\frac{1}{1}$$

Reciprocal of
$$1 = \frac{1}{1} = 1$$
 Similarly, Reciprocal of $-1 = -1$

(iii) The rational number that is equal to its negative is $\bf 0$.
Reason:
Negative of 0=-0=0
11. Fill in the blanks.
(i) Zero hasreciprocal.
(ii) The numbers and are their own reciprocals
(iii) The reciprocal of – 5 is
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is
(v) The product of two rational numbers is always a
(vi) The reciprocal of a positive rational number is
Solution:
(i) Zero has <u>no</u> reciprocal.
(ii) The numbers $\underline{1}$ and $\underline{-1}$ are their own reciprocals
(iii) The reciprocal of -5 is $\frac{-1}{5}$.
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is \underline{x} .
(v) The product of two rational numbers is always a <u>rational numbers</u> .
(vi) The reciprocal of a positive rational number is positive .