2. SOLUTION

2.36 100g of liquid A (molar mass 140 g mol⁻¹) was dissolved in 1000g of liquid B (molar mass 180g mol⁻¹). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 torr.

Solution:

No. of moles of solute,
$$n_2 = \frac{100}{140} = \frac{5}{7}$$
 mole

No. of moles of solvent,
$$n_1 = \frac{1000}{180} = \frac{50}{9}$$
 mole

Mole fraction of solute,

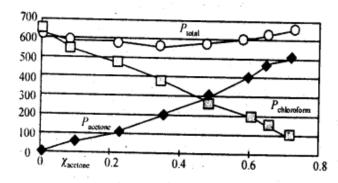
$$x_2 = \frac{n_2}{n_1 + n_2} = \frac{5/7}{5/7 + 50/9} = 0.114$$

Mole fraction of solvent, $x_1 = (1-x_2) = (1-0.114)$ = 0.886

According to Raoult's law

$$P_A = x_A P_A^{\circ} = 0.114 \times P_A^{\circ}$$

 $P_B = x_B P_B^{\circ} = 0.886 \times 500 = 443 \text{ torr}$
 $P_{\text{Total}} = P_A + P_B$
 $475 = 0.114 P_A^{\circ} + 443$
 $P_A^{\circ} = \frac{475 - 443}{0.114} = 280.7 \text{ torr}$
 $\therefore P_A = 0.114 \times 280.7 = 32 \text{ torr.}$


2.37 Vapour pressures of pure acetone and chloroform at 328 K are 741.8 mm Hg and 632.8 mm Hg respectively. Assuming that they form ideal solution over the entire range of composition, plot P_{total} , $P_{\text{chlroform}}$ and P_{acetone} as a function of χ_{acetone} . The experimental data observed for different compositions of mixtures is:

$100 \times \chi_{\text{acetone}}$	0	11.8	23.4	36.0	50.8	58.2	64.5	72.1
P _{acetone} /mm Hg	0	54.9	110.1	202.4	322.7	405.9		521.1
P _{chloroform} /mm Hg	632.8	548.1	469.4	359.7				

Plot this data also on the same graph paper. Indicate whether it has positive deviation or negative deviation from the ideal solution.

Solution:

X _{acetone}	 0.0	0.118	0.234	0.360	0.508	0.582	0.645	0.721
$P_{\text{acctone}}/\text{mm Hg}$	 0	54.9	110.1	202.4	322.7		454.1	
P _{chlorofonn} /mm Hg	632.8	548.1						
Ptotal	632.8	603.0	579.5	562.1	580.4		615.3	641.8

As the plot for P_{total} dips downwards, hence the solution shows negative deviation from the ideal behaviour.

Mole fraction of C6H5CH3,

$$x_T = \frac{1.087}{1.026 + 1.087} = 0.514$$

According to Raoult's Law,

$$P_B = x_B \times P_B^{\circ} = 0.486 \times 50.71 = 24.65$$
mm

$$P_T = x_T \times P_T^{\circ} = 0.514 \times 32.06 = 16.48 \,\mathrm{mm}$$

Mole fraction of C6H6 in vapour phase

$$=\frac{P_B}{P_B+P_T}=\frac{24.65}{24.65+16.48}=0.599.$$

2.38 Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80g of benzene is mixed with 100g of toluene.

Solution:

Molar mass of $C_6H_6 = 78 \text{ g mol}^{-1}$

Molar mass of $C_6H_5CH_3 = 92 \text{ gmol}^{-1}$

No. of moles of $C_6H_6 = \frac{80}{78} = 1.026$ mole

No. of moles of $C_6H_5CH_3 = \frac{100}{92} = 1.087$ mole

Mole fraction of C₆H₆,

$$x_B = \frac{1.026}{1.026 + 1.087} = 0.486$$

2.39 The air is a mixture of a number of gases. The major components are oxygen and nitrogen with approximate proportion of 20% is to 79% by volume at 298 K.

The water is in equilibrium with air at a pressure of 10 atm. At 298 K if the Henry's law constants for oxygen and nitrogen are 3.30 x 10⁷ mm and 6.51 x 10⁷ mm respectively, calculate the composition of these gases in water.

Solution:

Air containing 20% oxygen and 79% nitrogen by volume means

Partial pressure of
$$O_2(P_{O_2}) = \frac{20}{100} \times 10 = 2 \text{ atm}$$

= 2 × 760 mm = 1520 mm

Partial pressure of N₂ (
$$P_{N_2}$$
) = $\frac{79 \times 10}{100}$ = 7.9 atm
= 7.9 × 760 mm = 6004 mm

According to Henry's Law,

$$P_{O_2} = K_H x_{O_2}$$

$$x_{O_2} = \frac{P_{O_2}}{K_H} = \frac{1520}{330 \times 10^7} = 4.61 \times 10^{-5}$$

$$P_{N_2} = K_H x_{N_2}$$

$$x_{N_2} = \frac{P_{N_2}}{K_H} = \frac{6004}{6.51 \times 10^7} = 9.22 \times 10^{-5}$$

2.40 Determine the amount of $CaCl_2$ (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.

Solution:

Using relation,
$$\pi = iCRT = i \frac{n}{V} RT$$

$$n = \frac{\pi V}{i RT} = \frac{0.75 \times 2.5}{2.47 \times 0.0821 \times 300} = 0.0308 \text{ mole}$$

Molar mass of $CaCl_2 = 40 + 2 \times 35.5 = 111 \text{ g mol}^{-1}$

$$\therefore \text{ Amount of CaCl}_2 \text{ dissolved}$$
= $0.0308 \times 111 = 3.42 \text{ g}.$