Magnetic field due to a straight wire carrying current

Consider a straight wire conductor XY lying on the plane of the paper carrying a current I .Let P be the perpendicular distance a from the straight wire conductor

In right angle triangle POC $\Theta + \phi = 90^{\circ}$ or $\Theta = 90^{\circ} - \phi$ $\sin\Theta = \sin(900 - \phi) = \cos\phi$ $\cos\phi = a/r$ $r = a/\cos\phi$ $\tan\phi = I/a$ or $I = a \tan\phi$ differentiate it $dI = a \sec^2\phi d\phi$ write Biot- savart law $dB = \mu_0/4\pi$ x IdIsin Θ / r^2 putting all these value in B-S law we get $dB = \mu_0 I(a \sec^2 \varphi d\varphi) \cos \varphi / a^2 / \cos^2 \varphi$ $dB = \mu_0 I \cos \varphi d\varphi / 4\pi a$ integrate within the limit $\int_{-\varphi_1}^{\varphi_2} \cos \varphi d\varphi$

After integration we get

 $B = \mu_0 I (sin\phi_1 - sin\phi_2)/4\pi a$

Lorentz force: The total force experienced by a charged particle moving in a region where both electric and magnetic fields are present is called Lorentz force

Now the electric force

 $F_e = qE$

And the magnetic force

$$F_m = q(v \times B)$$

Now $F = F_e + F_m$

<u>Ampere circuital law</u>: The line integral of magnetic field induction B around a closed path in vacuum is equal to μ_0 times the total current I threading the closed path.

It is mathematically expressed as

$$\int B.dl = \mu_o I$$

Here μ_0 = permeability of free space = 4 π × 10⁻¹⁵ N/ A² and \int B.dI = line integral of B around a closed path.

Consider a regular coil, carrying some current I. Let us assume a small element dI on the loop.

 $\int B dI = \int B dI \cos \theta$

Here, θ is the small angle with the magnetic field. The magnetic field will be around the conductor so we can assume,

$\theta = 0^{\circ}$

We know that, due to a long current-carrying wire, the magnitude of the magnetic field at point P at a perpendicular distance 'r' from the conductor is given by,

$$\mathsf{B} = \mu_0 i / 2\pi r \qquad \mathsf{x} \int \mathsf{d} \mathsf{I}$$

The magnetic field doesn't vary at a distance r due to symmetry. The integral of an element will form the whole circle of the circumference $(2\pi r)$:

Put the value of *B* and $\int dl$ in the equation, we get:

 $\int B.dl = B \int dl = \mu_0 i/2\pi r \qquad \times 2\pi r = \mu_0 i$

therefore,

∫ B.dI = µ₀i

Motion of charge particle inside magnetic field :

Where 'm' is the mass of the charged particle and r be the radius of the circular path of the charged particle in magnetic field

$$Bq = \frac{mv}{r}$$
$$Bq = \frac{m\omega r}{r}$$
$$Bq = m\omega$$
$$Bq = m\omega$$
$$Bq = m\frac{2\pi}{T}$$
$$T = \frac{m2\pi}{Bq}$$
Also,
$$f = \frac{Bq}{m2\pi}$$

The distance moved along the magnetic field in one rotation is called pitch of the helical path

Pitch = $V_H x T$ = Vcos $\Theta x 2\pi m/Bq$ = $2\pi mvcos\Theta/qB$